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TECHNICAL MEMORANDUM X-64907

A STEERING LAW FOR A ROOF-TYPE CONFIGURATION FOR A
S INGLE-G IMBAL CONTROL MOMENT GYRO SY STEM

INTRODUCTION

As a candidate for the momentum exchange device to be used for attitude

control of the Large Space Telescope (LST - a payload of the Space Shuttle)

and the High Energy Astronomy Observatory (HEAO), four Single-Gimbal

Control Moment Gyro (SGCMG) systems have been investigated recently by

many researchers. 1, 2, 3

Two configurations of four SGCMG systems have been proposed thus

far: a pyramid-type configuration, i. e., the gimbal axis is normal to the faces

of a square-based pyramid (Fig. 1), and a roof-type configuration (Fig. 2).

At first the pyramid-type configuration was investigated extensively and

various steering laws were proposed. In this configuration, however, the

singular states (the state at which the torque output axes associated with each

of the SGCMG' s in the system are coplanar and the system cannot respond to

out-of-plane commands 2 ) cause serious difficulties and each of these proposed

steering laws has shown some unsatisfactory performance in certain situations.

As a configuration in which the difficulty of singularities would be less

serious, the roof-type configuration was investigated and, at the same time, the

OMEGA steering law was proposed. 2 The main feature of this configuration is

1. B. G. Davis, A Comparison of CMG Steering Laws for High Energy Astron-

omy Observatories (HEAO's), NASA TM X-64727, 1972.

2. J. W. Grenshaw, 2-SPEED, A Single Gimble CMG Attitude Control System,
TR-243-1139, Northrop Services, Inc., 1972. In this reference this law is
called 2-SPEED (Two Scissored Pair Ensemble, Explicit Distribution), but it
is usually referred to as OMEGA (Optimum Momentum Exchange by Gimbal
Alignment) (see p. ii of this reference).

3. J. R. Glease, A Summary Description of the 2-SPEED Steering Law and
Configuration for Single Gimbal CMG's, NASA Internal Memo, S&E-AERO-DOI/
Analytical Investigations Section, October 1972.



MOMENTUM VECTOR

Figure 1. Pyramid-type single-gimbal CMG configuration.
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Figure 2. Roof-type single-gimbal CMG configuration.
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that it consists of two pairs of gyros, with each pair sharing a common gimbal

axis direction.

Although the OMEGA steering law gives rather good control performance,
it still has the defect that stable singular statues exist. A stable singular state

is defined as a singular state which can be maintained by setting the input torque

command to zero. The existence of such states is not desirable because of the
following reason: If a certain torque command is given when the system is in,

or near, a singular state, there will be large control deterioration, and the

existence of stable singular states makes the possibility of occurrence of this

control deterioration larger.

In this report, for four SGCMG systems with the roof-type configuration,
a steering law is proposed which does not have the above-mentioned defect.

This steering law is obtained by regarding the CMG system as a sampled-data

system and providing a new momentum distribution scheme.

The basic procedure of the steering law is as follows: (1) at each sampl-
ing instant the desired total momentum at the next instant is calculated from the

present total momentum and torque command; (2) according the the predeter-

mined momentum distribution scheme, the desired total momentum is distributed
into two desired momenta for the two CMG pairs; (3) a desirable combination
of gimbal angles which realizes these desired momenta is calculated for each

CMG pair; (4) the desirable gimbal angles are compared with the present

gimbal angles to select a best way to attain the desirable gimbal angles, and

(5) a gimbal-rate command is calculated and if the calculated rate command

exceeds the hardware limit, the rate command is modified not to exceed it.

An important feature of this steering law is that, because of a new

momentum distribution scheme, it does not result in any stable internal sin-
gular state. Therefore, the possibility of the occurrence of unfavorable torque
command when the CMG system is at, or near, a singular state is negligible.
Moreover, it will be shown by computer simulations that even if such an unfor-
tunate situation happened, control deterioration would be very small. Another
feature is that, since this momentum distribution scheme treats the momentum
directly, any reasonable momentum distribution can easily be realized.

In the next section the roof-type SGCMG system is described and some
considerations are given to the system from the viewpoint of sampled data
control system. In the section titled Steering Law, a steering law is described
in five steps. In the section, Momentum Distribution Scheme, such a scheme is

given which is left undecided in the Steering Law section. The CMG-out operation

3



is discussed in the section having that title, and results of the computer simula-

tions are given in the section, Computer Simulations. Redistribution out of

undesirable initial states, insensitivity of the steering law to the sampling inter-

val of the CMG system, the behavior of the CMG system after reaching any

momentum saturation, and the flexibility of the steering law with respect to the

desirable momentum distribution are considered in the Discussion section. The

conclusions are given in the last section.

In the following sections, the physical explanations and selection of con-

stants for the simulations are made with regard to the LST. Almost the same

argument can be presented for the HEAO.

ROOF-TYPE CMG SYSTEM

Figures 2 and 3 show the roof-type configuration of a four SGCMG

system and its mounting arrangement
relative to the LST. Each CMG angular TELESCOPE AXIS

momentum (and torque) vector is X
restricted to the plane I or II, which is

skewed relative to the vehicle Y-Z plane
by the angle p.

The angular momentum vector of
the i-th CMG is denoted by hi, i = 1, 2,

-1

3,4. In addition to the coordinate sys-

tem (XYZ), we also use coordinate sys-

tems (X I Y ZI) and (XI YII ZII), which

are shown in Figure 2, for the pairs (h 1-l1
h2 ) and (h113, h4), respectively.

The angle between the rotation
axis of the i-th CMG and XI for i = 1,2

(or XI for i = 3,4) is called the i-th

gimbal angle and is denoted by ai (in

degrees). Figure 2 shows the state
where a. = 0, i = 1, 2, 3, 4. SOLARWING

Figure 3. Mounting arrangement

Let us assume that h.' s have the of roof-type CMG system
-1

relative to LST.
same magnitude h * and define

4



h =h +h

h = h +h
!-II -3 -4

Then,

h = [h 1 hl 2  0 1 T, (in X Y Z -coordinate system)

S [h h 0T (inX Y Z coordinate system)

-hiI = II hII2 XII II Z II

where the superscript T denotes transpose and

hi1 = h, (cos a + cos a2) , (la)

hi2 = h ( sin al + sin a2) , (lb)

hII = h* (coss +c)os , (ic)

and

h 1= h (sin a +sin a) . (id)

The total momentum h of the CMG system is given by

4
h= h. =h + h
- -i -I -II

i=1

[h h y h ] , (in XYZ-coordinate system) (2)

5



where

h = sin p (hi 2 +h 2 )

h = h -h ,

and

hz = cos P (hi 2 - h112 )

h can also be expressed as

Sh= h 2  (in Yi YII Y - coordinate system). (3)

h i - hmJ

Notice that h is determined uniquely if aA [ al' a2 c a3 I a ] T is
1 1 31 4

given, but that a is generally not determined uniquely even if h is given.

The input (control) variable of the CMG system is the rate of the

gimbal angle r (= ) ; the output is the torque, i. e., the rate of the total

momentum t = _ , and the purpose of this system is to make t equal to the

torque command t .
-C

For the case where a digital computer is used to obtain the desirable

gimbal rate from the torque command t , it is impossible to make t equal to
-c

t at all times. Hence, the treatment of the system as a sampled-data system
-c
is appropriate in this case. This treatment also plays an important role for the

development of a steering law in later sections. Let T be the time variable, A

be a sampling period, and h (T) and a (7) be h and a at time .

6



It will be simple and practical to impose the restriction,

S(7) = a(nA), nA < 7 < (n+l)A, n= 0, 1, 2, ...

This corresponds to using a zero-order hold. The output torque then satisfies

the following equation:

7*

f t (7) d7 = h[a(nA) + a (nA) (7*-nA)
nA

- h [ (nA)] . (4)

Since the torque command is usually obtained from the observed position

and rate of the spacecraft and the spacecraft is exposed to unknown disturbances,

it is impossible to know the future t (7), 7 > nA exactly at the present time
--C

nA . Therefore, it is natural to assume that the purpose of the system is to

make the average of the output torque during the coming A period, t (7), nA <

5 (n + 1) A, equal to t (nA) where n = 0, 1, 2, ....
-c

The left-hand side of equation (4) is the momentum which is transferred

from the CMG system to the spacecraft and which, in turn, causes the change

of angular rate of the spacecraft. Hence, the above purpose of the system can

also be interpreted as the effort required to change the rate of the spacecraft

a specific amount during each sampling interval.

Hereafter, a (nA) and h (nA) will be denoted by a (n) and h (n) for

the sake of simplicity.

STEERING LAW

In this section a steering law is proposed which will fulfill the purpose

described in the previous section. This steering law consists of the following

five steps. Assume that the present time is 7 = nA.

Step 1: Given the present gimbal angle a (n) and torque command

t (n), calculate the desired total momentum h at the next sampling instant:
-c -d

7



h h (n) + At (n)
-d --

= [h h h
dl d2 d3

(in YI YY-coordinate system) , (5)

where

h (n) = h12 (n)

h112 (n)

hi 1 (n) - h Ii (n) (in Y Y Y-coordinate system)

h 1 (n) = h, [cos al (n) + cos a2 (n)] , (6a)

hi2 (n) = h, [sin al (n) + sin a 2 (n)] , (6b)

hlil (n) = h, [cos a 3 (n) + cos a 4 (n)I , (6c)

and

hl 12 (n) = h [sin a3 (n) + sin a 4 (n) ]  . (6d)

Step 2: Obtain the desired momentum distribution between two momen-
tum vectors h and h at the next sampling interval:

h1 = fI [h d a (n)} , (7)

8



hI 1 =-fI[ _hd,  (n)] (8)

h =h (9)

h12 = hdl

and

hII2 = hd2

where fI and fn are given by the momentum distribution scheme, which will be

described in the next section.

Remark 1: It is clear from the relation (3) that, for hI and hI to satisfy

h +h = ,
-1 -II -d

three relations, (9), (10) and

hi 2 - hi 1 = hd 3 , (11)

should hold. Therefore, all that the momentum distribution scheme can do is

to distribute hd 3 among hi 1 and hll. This distribution is expressed as a pair

of functions fI and fII

Step 3 Calculate the pairs of gimbal angles (a I1, a 12) and (a II 1 , a I2)

which give the momentum vectors h and h , respectively (Fig. 4). As can be

seen easily from Figure 4, aI1 and a12 are given by

a , +1 6I (12a)

and

9



"'12= -I - 1  (12b)

where

YI - tan- 1 (h 11 /h 1 2 ) + 90 sgn (h1 2) , if hi 2  0
(13)

90 sgn(hi 1) [sgn(h 1) - 1 , if hi 2 = 0

5 = 90 - tan- 1 [h 1 /(4h 2 - hi2)] , ifh I 
< 2h

(14)
0 , if h I  2 h ,

and sgn (.) is a sign function defined by

sgn (a) = + 1 , if a > 0

0 , ifa = 0

-1 , ifa < 0

Similar equations give a III and a 112'

Remark 2: The magnitude of h , h i should be less than or equal to 2 h,

in order to be physically realizable by the pair I. However, there is a possibility

that hI may become larger than 2 h.* The inequality sign in equation (14) takes

this into consideration.

Step 4: For pair I, select the better way between the following: (ai) to

bring al to aI1 and a 2 to a 2 , or (bi) to bring a 1 to a 2 and a2 to all.

10



Figure 4. Gimbal angles 0 II' I 12' Il and II2

for given h and h

Let

ell = mod [a - a (n) ]  , el 2 = mod [a2 - a 2 (n) ]  (15a)

11 11 1 12 12 2

and

e3 = mod [a1- a2 (n)] , e4 = mod [a2 - al(n) (15b)

where mod (a) is defined by

f , if la I < 180

mod (a)

mod) - 360 sgn (a) , if la I > 180

11



2 2 2 2
Then we decide as follows: Choose (a1 ) if el + el2 e + el4 choose

(b I ) otherwise.

For pair II, define (aII), (bII), eii ~ e114 , and follow the same pro-

cedure.

Remark 3. It may be better to choose (ai) if max ( 1 el , I e21) 5 max

(le I3 1, I e4 1 ) and choose (b ) otherwise, but the above decision method was

selected because of its simplicity.

Step 5: Calculate the command rate r:-c

r , if r' <ri rmax g r

rci (16)

r ' r/r' if r' > r
g max max g

where

(eII/A, e/) , if (a,) is chosen

(rl, r2l)

(e 13 /A, eI4/A) , if (bI) is chosen ,

(em/A, el12/A) , if (a ) is chosen

(r3, r)

(el 3 /A, e 4 /A) , if (bI) is chosen ,

12



r' = max (Ir' Ir' r', r ) , (17)
max 1 2 3 4

and r is the maximum limit of the gimbal angle rate.
g

Remark 4: r! is the gimbal rate of the i-th CMG required to realize the
1

desirable gimbal angles obtained in Step 3. The meaning of equation (16) is that

if any of the r' ' s exceed the maximum limit of the gimbal rate r (which is

determined by CMG hardware), then gimbal rates r'i ~ r are limited propor-

tionally to minimize the effect of undesirable output torque due to the hardware

restriction.

This completes one cycle of calculation of the command rate r from

a (n) andt (n). At time (n + 1) A, upon obtaining the new state a (n + 1), a

new cycle begins from Step 1.

MOMENTUM DISTRIBUTION SCHEME

In this section a momentum distribution scheme between hi1 and hill'

i. e., a specification of a pair of functions fI and fII, is given.

Let x1 and x 2 be

1 2

A 4 h - hdl x2 A 4 - h d2 (18)

These values express the capability of the two pairs in producing momentum in

the direction of the Y-axis when hi2 = hdl1 hii2 - hd2. Using these variables,

we specify that

13



fI [d, a (n) = Xl h d 3 /(Xl+ X2 )+g (19a)

and

fII [d' a (n) = x 2 h d3/(x 1 + x 2 ) - g (19b)

where the first terms in the right-hand sides denote a proportional distribution

of hd3 , and g of the second term represents an additional (or excessive) distri-

bution. Notice that for any g, fI and fII satisfy

fI + fII = hd3 '

Therefore, we can select any value for g.

First, a desirable g, g* will be given as a function of hd3 , x1 and x 2.

Then the value of g will be given as a function of g* and the present state a (n).

This two-stage approach is taken to make the present additional distribution g(n)

converge to the desirable additional distribution g* without too much change for

each sampling interval. In the following, g* is given. First let us define two

candidates for g*:

X x 0 hd3  90d 31 2  
2

ga 4 0. 9 cos. 1 x 1x2 +(2- 0.9) cos x1 +x2

(20a)

and

X1X2 90 hd3
gb 0. 8 cos + 2d3 (20b)

14 b 4 x1 2

14



We then select one of ga and gb as g* in the following way:

x x
2 1

g, if g - h h g + ha' c x i +x 2  d3 3 d3 c x +x 2  d3
1 2 1 2

g* = (21)

gb otherwise

where

(0. 5 + k) ga + (0. 5 - k1) gb if g* = ga at the last cycle

gc = (22)

(0. 5 - k) ga + (0.5+kl) gb ' if g* = gb at the last cycle

and 0 < k 1  0.5 (for example, k1 = 0.2).

A desirable momentum distribution { f*, fi* } which corresponds to g*

is given by

fI* = X1 hd 3 /(x 1
+ x 2 ) + g* (23a)

and

fII* = x2 hd3/(x1
+ x 2 ) - g *  . (23b)

Figure 5 shows a schematic diagram of fI* and fI* as a function of hd3 for a

given pair of x l and x 2.

15



Ihd3 I hd3

2  I / 0(x, + x) / 0x+ x, + xz

_II I

-(x]-+x) 0 0 x +xz

-X2

a. If g* = ga at the last cycle. b. If g* = gb at the last cycle.

Figure 5. Schematic diagram of the desirable momentum distribution.

Now let us specify a relation between g and g*. The additional distri-
bution g (n) at the present state _y (n) is given by

xl (n ) [hl(n) - hi l (n)]
g(n) = h (n) - (24)

II xl (n)+ 2 ()

where

1 (n) A 4 h 2  hI 2 (n)

and

16



x 2 (n) 4h - h1
2 (n)

Using g(n), we specify g as follows:

g* , if Ig* - g(n) - gmax

(25)

g(n) + g max sgn [g*- g(n) , if Ig*- g(n) > gmax

where

gmax = k2 A rg h r /180 , (26)

and k2 is a constant (for example, k2 = 0.5).

The above equation means that, although the additional distribution g at

the next sampling instant should be as close to g* as possible, its change in one

sampling interval should not be larger than a maximum allowable change gmax o

The constant k2 determines a degree of instability of the singularities. There-

fore, if the torque command is kept zero, any initial state converges to a

desirable momentum distribution state in a finite time.

Returning to discussions of the desirable momentum distribution as was

shown in Reference 2, there are two types of internal singularities (i. e., .'-

singularities inside the momentum envelope):

(a) a1  - 2 = 90 deg ora 3 = - a 90deg

and

17



(b) I0 1 - a2| = la3 - a 4  180 deg

When the OMEGA steering law is used, there are stable singular states
of type (a) although those of type (b) are unstable.

Singular states (a) and (b) are represented by lines a1 , a2 , and point b

in Figure 6. From the previous discussions it is clear that, as the time evolves,
points on lines a l and a2 (including point b) are transferred to points on the lines

of fI * and fII* (for example, if the torque command is zero, point b will be trans-

ferred to point b' in the figure). Therefore, all the internal singular states are
unstable when the proposed steering law is used. This instability causes quick
movement out from singular states and will make very small the possibility of
facing unfavorable torque command just at the singular state. Moreover, even
if an unfavorable torque command is applied just when the system is in a sin-
gular state, the control deterioration is very small. This will be shown by
digital simulation results in the section, Computer Simulations.

A realistic situation in which serious control deterioration may occur will
be the passage of the system state through a neighborhood of a singularity caused
by a fluctuating torque command. This fluctuation is unavoidable because of
various disturbance torques and sensor noises. A model of such a situation is
shown in Figure 7, where a small sinusoidal torque command in the YZ-plane
with a little bias in the Y-axis is applied to the system at zero momentum state.
This sinusoidal torque command forces the system to pass near, or hit, a
singularity.

Now let us show by an intuitive argument that the hysteresis introduced
at two jumps of fI * and f I* keeps the control deterioration very small in this

situation. In Figure 5 the passage of the system close to a singular state cor-
responds to the passage of the value of hd3 close to one of two jump points.

According to the fluctuation of torque command, the values of x 1 and x 2 will

also fluctuate. If there is no hysteresis [that is, kl = 0 in equation (22)], this

fluctuation may cause a fluctuation of g* between ga and gb, which causes control

deterioration caused by hardware limit on the gimbal rate. By the introduction
of hysteresis, however, most of the fluctuation of g* between ga and gb could be

avoided, thus keeping the control deterioration to a minimum.

18



b' X X1 2

b -hill fll*

hd3

I .-i

S XI + X2

Figure 6. Relation between internal singular states and the

desirable momentum distribution.

Because of these two features of this steering law, the instability of the

singular states and the hysteresis of the desirable momentum distribution, we

can say the following: If any control deterioration occurs because of a sin-

gularity, keep the torque command zero, and in a short time the trouble will

be gone.

Candidates for g*, ga and gb of equation (20) have been selected as a

simple pair which satisfies the following requirements:
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CX

cx TIME

tcy

0 - , TIME

o TIME

a. Torque command.

X

Z

b. Transition of total momentum.

Figure 7. A model of fluctuating torque command and
corresponding transition of total momentum.

1. The value of ga should be r2for xl= x2 = 2 and hd3 = 0 in order to

give the gimbal angles {al = a 3 = 45 deg, a 2 = a4 = - 45 deg} for the zero momen-

tum stationary state. These gimbal angles are desirable for the LST because
the possible output torques in the Y and Z directions are balanced. (A more
detailed discussion is given in the appendix.)
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min (x 1 ' x 2 )
2. 0 gb 5 ga 5 (X +X 2 - Ihd3 1) (27)

b a x1 +x 1 2 d3

for 0 x 2, 2 0 x 2  , hd31 x + x2  x + x * 0
1 2 d 1 2 1 2

3. ga and gb should be smooth.

So far we have neglected the case of Ihdll > 2 h,, lhd 2 |I 2 h,, or

x1 (n) + x 2 (n) = 0, which may cause trouble in treating equations (19) through

(21) and (24). This trouble can be easily avoided, for example, by using,
instead of equation (18),

2 2 2 2> 2
4h - hd , if 4h - hd = E 1

1 2 2 2
E1 , if 4h, - hl < E1

2 2 2 2 2
4h - hdli if 4h - h- 2 = E1

x2

2 2 2
El , if 4h - hd2 < E1

where El is a small positive number (for example, E1 = 0. 0001) and by using,

instead of equation (25),

x1 (n) [h 12 (n) - hH2(n)
g(n) = hn) xl(n) + x2(n) + E2

where E2 is a small positive number (for example, E2 = 0. 00001).
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CMG-OUT OPERATION

We assume that a signal is sent to a control computer continuously from
each CMG indicating whether it is operating. We will consider the case with
only one CMG-out. Under this assumption, we will develop a steering law which
automatically transfers the system to the state of CMG-out operation when a
CMG fails and, moreover, automatically resumes the state of normal operation
when the out-CMG recovers.

When a CMG is out, there is no capability for an arbitrary momentum
distribution. For example, when the first CMG failed, hI = h 2. Hence, the

I-2
magnitude of h is fixed to h,.

Since hi2 should take the value hdl, hi1 can take only one of the two

values h h - hdl Furthermore, the direction of h I should not be far

away from that of the present momentum h (n). A simple way to achieve this

may be given as follows:

+ h 2 - hdl2 , if h1 (n) > 0

hI1
or if h l(n) = 0 and hd3 < 0

2 2
- h, - hdl , if hil(n) < 0

or if hl(n) = 0 and hd3 < 0

hIll = - hd3 + hi1
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Taking into consideration that the total duration of the CMG-out opera-

tion is (and should be) much less than that of normal operation and that the

operation should go back to normal when the out-CMG recovers, the CMG-out

operation should be performed by a steering law which is close to that of

normal operation, even if that law has some redundancy.

From this point of view, the following modification to the steering law

for normal operation seems to be good to include the CMG-out operation.

Letw = [w1 w w3 i w ] T be a CMG-out signal vector. When the i-th

CMG is not out, w. = 1 and when it is out, w. = 0.
1 1

In step 1, instead of equation (6), we adopt.

hi1 (n) = h [w l cos a l 
( n ) + w2 cos a 2 (n) ] ,

hi2 (n) = h [w 1 sin a l (n) + w2 sin a 2 (n)

hll(n) = h. [w3 cos a 3 (n) + w4 cos ao4 (n)]

and

h112 (n) = h [w 3 sin a3 (n) + w4 sin a4 (n) ]

In step 2, concerning equations (7) and (8), three cases should be

treated separately:

Case 1. w 1 + w 2 + w 3 + w4 = 4

(normal operation).
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Case 2. w1 + w 2 = 1

(a CMG of the pair I is failed).

Case 3. w + w = 1

(a CMG of the pair II is failed).

In Case 1, use equations (7) and (8). In Case 2, use

{sgn [h (n) + [1- sgn [hi 1 (n)] sgn (hd 3 )} h. - hdl

hi1
if hdl < 1

0, if hdl - 1

and

hii1 = - hd3 + h1

In Case 3, use

{sgn [hl(n)] + [ - sgn [h (n)] sgn (hd3)} h -- hd2 ,

hII1

if hd2 < 1

0, ifh 2 1
d2 -

and

h1 = hd3 + hIII
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Steps 3 and 4 need no modification. In step 5, instead of equation (17),

we adopt

rl = (w Irl, I wIr, w Ir'1, w4 r') .
inax 1 2 3 3 4

COMPUTER SIMULATIONS

A program for computer simulation of the CMG system with the proposed

steering law was made using BASIC language and a minicomputer. Values of

constants were selected as follows:

P = 30 (deg) , h. = 1 (normalized) ,

A = 2 (sec) , r = 2 (deg/sec)

k 1  0. 2 , k= 0.5 ,
1 2

E = 0.0001 , = 0.00001

Some results of the computer simulations are given in Figures 8 through
12. Figure 8 shows the transition of the gimbal angles ca. and the output torque

in the XYZ-coordinate from the zero momentum stationary state, a =

[45 deg - 445 deg 45 deg, - 45 deg] , when a torque command of magnitude

0.01 (normalized number by h. ) is applied in the direction of the Y-axis. No
loss or deterioration of control occurs passing through the singularity as in the
case of the OMEGA steering law. Moreover, this singular state is unstable, as

shown in Figure 9, where the torque command was changed to try to stop the
system at the singular state but the attempt failed.

The effect of unfavorable torque commands at a singularity is shown in

Figures 10 and 11. Figure 10 shows the case where the torque command of

magnitude 0. 01 in the direction of the Y-axis was suddenly changed to the
direction of the minus XII axis (most unfavorable direction) just when the
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Figure 8. Transition of gimbal angles and output torque
for Y-axis torque command.
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Figure 9. Attempt to stop the system state at singularity.
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Figure 10. Effect of unfavorable torque command at singularity
(command magnitude - 0, 01).
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Figure 11. Effect of unfavorable torque command at singularity
(command magnitude = 0.005).
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system reached the singularity. The figure shows a delay of 12 sec in response

of the output torque to the command torque. Figure 10 shows the case where the

magnitude of unfavorable torque command is 0. 005, i. e., one-half of that in the

previous case. The delay in this case is 6 sec. Generally, the smaller the

magnitude of unfavorable torque command, the smaller the delay in output torque.

Figure 12 shows the response to a fluctuating torque command which is

composed by adding an X-directional sinusoidal component to that in Figure 7:

0.0025 sin (10 7)

t (T) = 0.005 sin (5 ) + 0.0005
-c

0. 005 cos (5 'r)

The initial state is a = [ 21. 36 deg I - 21.36 deg 81.88deg - 81.88 deg]T,
I I T

which corresponds to h = [O 1. 52 01

If no hysteresis is introduced into the desirable momentum distribution,

that is, if k = 0 in equation (22), the response to the same torque command

becomes that given in Figure 13. It is clear by comparing Figures 12 and 13

that the introduction of hysteresis keeps the period of control deterioration to a

minimum (it should be noticed that slewing of a3 and a4 for 180 deg cannot be

avoided). Any steering law for the roof-type configuration with no hysteresis

will suffer to a certain extent from such a control deterioration as that in Fig-

ure 13. Figure 14 is a typical example of operations with a CMG failed where a

torque command of 0. 01 is applied in the direction of the Z-axis. As seen from

the figures, the control performance is quite satisfactory.

DISCUSSION

Because of Step 4, our steering law redistributes away from undesirable

initial states in a very fast way as shown in Figure 15, where the initial gimbal

angles are (0 deg, 180 deg, 90 deg, - 90 deg) in (a) and (- 30 deg, - 20 deg,

-135 deg, 45 deg) in (b). Although slightly undesirable output torques are seen

in the figure, they are negligible.
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Figure 14. CMG-out operation for Z-axis torque command.

33



180 180

120 120
a 4

60 60:

0 0 V I 0
100 4 100

TIME (sec) TIME (sec)

-60 -60
a4

-120 . -120 j,

-180 -180

0.01[ tx 0.01 tx

0 0  x

-0.01 -0.0 1  100

LU UJ

0.01 ty 0 0.01 t
o o
0 0

100 100
D -I-0.01 -0.01

0.01 tz 0 0.01 tz

0 0 I I
100 100

-0.01 -0.01 1

TIME (sec) TIME (sec)

a. Initial state: al = 0 deg, a 2= 180 b. Initial state: at = - 30 deg, a 2
deg, ac = 90 deg, a4 = - 90 deg. - 20 deg, a 3 

= - 135 deg, a 4 = 45 deg.

Figure 15. Redistribution of undesirable initial states.
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Even if the length of the sampling interval is very large, the control

performance of our steering law has no theoretical error as far as the control

purpose stated in the section, Roof-Type CMG System, is concerned, except

when it is impossible to meet the torque command because of the gimbal rate

limitation or momentum saturation. This might be an advantage if changes of

sampling interval during the operation of the CMG system are desired for some

reason. It should be noted that a longer sampling interval may cause a control

deterioration due to fewer updatings of the torque command.

In most steering laws developed so far, additional logic is necessary.to

prevent the gimbal angles from getting into an oscillation with maximum rate

after reaching any momentum saturation. When our steering law is used, there

is no such oscillation. Roughly speaking, the system moves toward a saturation

state where the direction of the total momentum is the same as that of the

desired total momentum. We can also make the system stop whenever it reaches

a saturation state, and keep that state until a torque command in a direction of

desaturation is applied, simply by adding the following additional step to our

steering law.

Step 6.

rci = 0, i = 1, 2, 3, 4

if

h > (w 1 + w 2 )h ,

and

(al a12) [ Irl 1+ r 2 1w2 +w 1 2 ] = 0 ,

are satisfied, or if..



hi > (w 1 + w2) h

and

(a3- 4) [r 3 1w 3
+ Ir 4 1w4 +w3w4 ] = 0

are satisfied.

So far, we have discussed our steering law with one specified desirable

momentum distribution {fI*, fII } given by equation (23). The answer to the

question of what the desirable momentum distribution is might vary, depending
on each engineer and on the capability of the CMG hardware used. One of the

features of our steering law is that, since our momentum distribution scheme

treats the momentum directly, it can easily realize any reasonable momentum

distribution. To illustrate this, an example is given in the following. In this

example, we attempt to achieve a control performance similar to that of the

OMEGA steering law. The desirable additional distribution g* is selected as

V 1 2 cos 90 hd3
4 cos +x2

A schematic diagram of the corresponding desirable momentum distribution is

given in Figure 16. A simulation result for the case of unfavorable torque

command at a singularity is given in Figure 17. The figure shows a delay of

44 sec. Several other simulation results have also shown a control perform-

ance which is quite similar to that of the OMEGA steering law.

The computing requirements will now be discussed. According to the

author' s experience, the length of the program for our steering law is about

1. 2 times that for the OMEGA steering law when a proportional limit on rate

command [like equations (16) and (17)] is included in the OMEGA steering

law. Since our steering law is given in five steps, each of which has a very

simple physical meaning, it will be easy to.modify or to simplify it in accord-

ance with various requirements in practical applications without changing its

main concept. When this point is considered, the computing requirement of

our steering law is very reasonable.
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It will be possible to give a control performance similar to that of our

steering law by adding the same idea as that in the section, Momentum Distri-

bution Scheme, to the OMEGA steering

law. However, the author believes that

the approach taken in this report is f

easier to understand and has various

advantages over any modification of the -

OMEGA steering law.
1 .0 0 hd3

-(x +x )x 
+ X

CONCLUS IONS

A steering law is proposed for

a roof-type configuration of the

SGCMG system which is obtained -hll

by regarding the CMG system as a -

sampled-data system and providing a -- - - --

new momentum distribution scheme. hd3

This scheme is designed to bring any '_'

state of the system to a state with a -x, +) +

predetermined desirable momentum + o

distribution, which has two jumps with I -x2

hysteresis around singular states. It -

is analytically shown that these jumps

make all the singular states unstable Figure 16. Schematic diagram of desir-

and that these hysteresis effects make able momentum distribution correspond-

the system relatively insensitive to ing to g* = x1 x2 cos [ 90 hd 3 /(x 1 + x 2 )1/4.

singularities.

With these two features it is

expected that the steering law will give a control performance which is good

enough for practical applications. Results of the preliminary computer simu-

lations entirely support this expectation.
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Figure 17. Response to an unfavorable torque command in case where the
desirable additional distribution is i* = x 1 x2 cos [ 90 hd3/(x 1 + x 2 )1/4.
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APPENDIX

DESIRABLE ZERO MOMENTUM GIMBAL ANGLES
AND TORQUE ENVELOPE

The shape of the total momentum envelope has been the criterion for

determination of the skew angle P. However, when a CMG system is accom-

panied by a device for desaturation such as a magnetic torquer in the case of the

LST, most of its operation period would be spent around the zero momentum

stationary state. In such a case, the shape of the envelope of the possible torque

output at the zero momentum stationary state will also be important. If this

shape is not proper, it may happen that a much larger rate command is necessary

to give an output torque with a fixed magnitude in one direction than that necessary
in another direction.

This torque envelope at the zero momentum stationary state could also

serve as a criterion for determining desirable zero momentum gimbal angles,

whereas the momentum envelope is not a proper criterion for this.

In this appendix it is shown that, for the LST, / = 30 deg, which was

recommended from the viewpoint of the momentum envelope, is reasonable also

from the viewpoint of the torque envelope, and that desirable zero momentum

gimbal angles are a 1 = 45 deg, 2 = - 45 deg, a3= 45 deg, a4 = - 45 deg.

First, all sets of gimbal angles which give zero momentum will be

obtained. From equation (3),

hi2 = 0 ,

h = 0,
112

and

hI1 = hill
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Hence, any set of gimbal angles for zero momentum should satisfy

al = a 2 = ±a 3  a 4  , (A-1)

or

la l - a 2 1 = a 3 - 4 = 180 deg . (A-2)

Second, a torque envelope will be defined. An output torque [!tI ty ItT

at any state a and gimbal rate & is given by

tx = d hx/d = sin P (&l cos al + &2 cos a 2 + &3 cos a 3 + &4 cosa 4 ),

t = dh /d = - (1 sin al+ &2 sin b 2 + s3 cos a3 &4 co a 4 )

and

t = dh /dT = cosfl (l Cos a+ &2 cos a 2 -3 cos aS - a4 cos a 4 ).

(A-3)

A torque envelope at state a is defined as the envelope of all possible output
torque vectors under the constraint I l1 5 1.

Third, the torque envelope for zero momentum states will be obtained.
For a set of gimbal angles satisfying equation (A-2), the torque envelope is a
diamond-shaped plane (Fig. A-1) and this state cannot produce an output torque
perpendicular to this plane. This corresponds to the fact that this state is
singular. Hence, equation (A-2) is not desirable as a zero momentum state.
For a set of gimbal angles satisfying equation (A-1), the torque envelope is a
duodecahedron shown in Figure A-2 where
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tx* = 4 sinfp Icos ll (A-4)

t * = 4 1 sin all (A-5)
y

tz* = 4 cosp Icos al ; (A-6)

t *, t * and t * are interpreted as the
x y z

normalized maximum possible output

torques in the X, Y, and Z directions. a2rnS
It can be assumed that 0 5 a 5 90 deg -- '

without any loss of generality because
of the symmetry of the system.

Now, the question of what values a
should be selected for P and o 1 to make v.d

the torque envelope have a good shape
will be discussed. For the LST, the

Figure A-1. Torque envelope at state
principal moments of inertia I , I ,

x y a = (30 deg, -150 deg, 30 deg,
and I satisfy I I 6 I . It is con- -150 deg).

z y z x
sidered to be reasonable to make t *

t * and t * proportional to Ix, I andI .
y z xy z

In order that t * = t * should be satisfied, from equations (A-5) andy z

(A-6), al and P should satisfy

-1

a1 = tan 1 (cos ) . (A-7)

Then,

t * = t * = 4 sin [tan-1 (cos )] . (A-8)
y z
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tx

x x

Vz

0 - 40

Figure A-2. Torque envelope at the state

l= - a2 = z 3 = T 4).

On the other hand, from equations (A-4) and (A-6), the following relation
is obtained:

t * = t * tanp ; (A-9)
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al' ty*, tz* and t x*, given by equations (A-7), A-8), and (A-9), are plotted

in Figure A-3 as functions of the skew angle P.

The value of P for which t * = t * = 6 t * is satisfied is P = 9. 7 deg. But
y z x

the decrease of t * and t * due to the increase of p from 9. 7 deg to 30 deg is
y z

only 6. 7 percent, while the increase of t * is more than 200 percent. Moreover,

the angle 30 deg is geometrically simple. Therefore, the best skew angle would

be 30 deg from the viewpoint of the torque envelope. For P = 30 deg, the angle

given by equation (A-7) is 40. 893 deg and

t * = t * = 2.619
y z

(A-10)

t * = 1. 512
x

The values of t *, t * andt * for = 30 deg and a = 45 deg are given by
y z x 1

t * = 2.828
y

t* = 2.450
z

t * = L 414
x

These values are not too different from equation (A-10). The angle 45 deg is

also a geometrically simple angle. Hence, al = 45 deg, a = - 45 deg, a3 = 45

deg, and a 4 = - 45 deg are recommended as the best zero momentum stationary

gimbal angles.

It can also be said from the veiwpoint of the torque envelope that an.

angle much larger than 45 deg is not desirable as a 1 . For example, t y*,

t z *, and tx* for = 30 deg, al =a 3 = 6 0 deg, a 2 = a4 = - 6 0 deg are given by
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Figure A-3. Gimbal angles a and normalized maximum possible output torquoe

t *, t*, and t * under the requirement t* t,
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t * = 3.464
y

t * = 1. 732
z

t * = 1.000
x

Roughly speaking, this means that, for a torque command in the Z-axis, the

gimbal angles should be driven with a speed twice that for a torque command in

the Y-axis with the same magnitude. This, of course, is not desirable.
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